Какие стали не закаливаются

Закалкой  называется операция термической обработки, состоя­щая из нагрева до температур выше верхней критической точки AC3  для доэвтектоидной стали и выше нижней критической точки АС1

 для заэвтектоидной стали и выдержки при данной температуре с последующим быстрым охлаждением (в воде, масле, водных раство­рах солей и пр.).

  • В результате закалки сталь получает структуру мартенсита и благодаря этому становится твердой.
  • Закалка повышает прочность конструкционных сталей, придает твердость и износостойкость инструментальным сталям.
  • Режимы закалки определяются скоростью и температурой на­грева, длительностью выдержки при этой температуре и особенно скоростью охлаждения.
  • Выбор температуры закалки.

Температура нагрева стали для закалки зависит в основном от химического состава стали. При за­калке доэвтектоидных сталей нагрев следует вести до температуры на 30 — 50° выше точки АС3 .

В этом случае сталь имеет структуру однородного аустенита, который при последующем охлаж­дении со скоростью, превышающей критическую скорость закалки, превращается в мартенсит. Такая закалка называется   полной.

При нагреве доэвтектоидной стали до температур AC1 — АC3 в структуре мартенсита сохраняется некоторое количество оставше­гося после закалки феррита, снижающего твердость закаленной ста­ли. Такая закалка называется неполной.

Для заэвтектоидной ста­ли наилучшая температура закалки — на 20—30° выше АС1 , т. е. неполная закалка. В этом случае сохранение цементита при нагреве и охлаждении будет способствовать повышению твердости, так как твердость цементита больше твердости мартенсита.

Нагревать заэвтектоидную сталь до температуры выше Аст не следует, так как твердость получается меньшей, чем при закалке с температуры выше АС1,за счет растворения цементита и увеличения количества остаточного аустенита.

Кроме того, при охлаждении с более высоких температур могут возникнуть большие внутренние напря­жения.

Скорость охлаждения.

Для получения структуры мартенсита требуется переохладить аустенит путем быстрого охлаждения ста­ли,находящейся при температуре наименьшей устойчивости аусте­нита, т. е.при 650—550° С.

В зоне температур мартенситного превращения, т. е,ниже 240°С, наоборот, выгоднее применять замедленное охлаждение, так как образующиеся структурные напряжения успевают выравняться, а твердость образовавшегося мартенсита практически не снижается.

Правильный выбор закалочной среды имеет большое значение для успешного проведения термической обработки.

Наиболее распространенные закалочные среды —вода, 5—10%-ный водный раствор едкого натра или поваренной соли и минераль­ное масло. Для закалки углеродистых сталей можно рекомендовать воду с температурой 18° С; а для закалки большинства легирован­ных сталей — масло.

Закаливаемость и прокаливаемость стали.

При закалке стали важно знать еезакаливаемость и прокаливаемость. Эти характерис­тикине следует смешивать.

Закаливаемость показывает способность стали к повы­шению твердости при закалке. Некоторые стали обладают плохой закаливаемостью, т. е.имеют недостаточную твердость после за­калки. О таких сталях говорят, что они «не принимают» закалку.

Закаливаемость стали зависит восновном от содержания в ней углерода. Это объясняется тем, что твердость мартенсита зависит отстепени искажения его кристаллической решетки. Чем меньше вмартенсите углерода, тем меньше будет искажена его кристалли­ческая решетка и, следовательно, тем ниже будет твердость стали.

Стали, содержащие менее 0,3% углерода, имеют низкую зака­ливаемость и поэтому, как правило, закалке не подвергаются.

Прокаливаемость стали характеризуется ееспособ­ностью закаливаться на определенную глубину.

При закалке по­верхность детали охлаждается быстрее, так как она непосредствен­носоприкасается с охлаждающей жидкостью, отнимающей тепло.

Сердцевина детали охлаждается гораздо медленнее, тепло из цент­ральной части детали передается через массу металла к поверх­ности итолько на поверхности поглощается охлаждающей жидкостью.

Прокаливаемость стали зависит от критической скорости за­калки: чем ниже критическая скорость, тем на большую глубину прокаливаются стальные детали.

Например, сталь с крупным при­родным зерном аустенита (крупнозернистая), которая имеет низ­кую критическую скорость закалки, прокаливается на большую глу­бину, чем сталь с мелким природным зерном аустенита (мелкозернистая), имеющая высокую критическую скорость закалки.

Поэто­му крупнозернистую сталь применяют для изготовления деталей, которые должны иметь глубокую или сквозную прокаливаемость, амелкозернистую — для деталей с твердой поверхностной закален­ной   коркой и вязкой незакаленной сердцевиной.

  1. На глубину прокаливаемости влияют также исходная структура закаливаемой стали, температура нагрева под закалку и закалочная среда.
  2. Прокаливаемость     стали можно определить по излому, по микроструктуре и по твер­дости.
  3. Виды закалки стали.
  4. Су­ществует несколько способов закалки, применяемых в за­висимости от состава стали, характера обрабатываемой де­тали, твердости, которую не­обходимо получить, и усло­вий охлаждения.

Закалка в  одной  среде схематично показана на рис. 1 в виде кривой 1.

Такую закалку проще выполнять, но ее можно применять не для каждой стали и не для любых деталей, так как быстрое охлаждение деталей переменного сечения в боль­шом интервале температур способствует возникновению температур­ной неравномерности и больших внутренних напряжений, что может вызвать коробление детали, а иногда и растрескивание (если вели­чина внутренних напряжений превзойдет предел прочности).

Чем больше углерода в стали, тем больше объемные изменения и структурные напряжения, тем больше опасность возникновения трещин.

Какие стали не закаливаются 

Рис. 1.   Кривые охлаждения   для различных способов закалки

Заэвтектоидные стали закаливают в одной среде, если детали имеют простую форму (шарики, ролики и т. д.). Если детали слож­ной формы, применяют либо закалку в двух средах, либо ступенча­тую закалку.

Закалку в двух средах (кривая 2)применяют для инструмента из высокоуглеродистой стали (метчики, плашки, фре­зы). Сущность способа состоит в том, что деталь вначале замачива­ют в воде, быстро охлаждая ее до 300—400° С, а затем переносят в масло, где оставляют до полного охлаждения.

Ступенчатую закалку (кривая 3) выполняют путем быстрого охлаждения деталей в соляной ванне, температура кото­рой намного выше температуры начала мартенситного превращения (240—250° С).

Выдержка при этой температуре должна обеспечить выравнивание температур по всему сечению детали.

Затем детали охлаждают до комнатной температуры в масле или на спокойном воздухе, устраняя тем самым термические внутренние напряжения.

Ступенчатая закалка уменьшает внутренние напряжения, ко­робление и возможность образования трещин.

Недостаток этого вида закалки в том, что горячие следы не мо­гут обеспечить большую скорость охлаждения при температуре 400—600° С. В связи с этим ступенчатую закалку можно применять для деталей из углеродистой стали небольшого сечения (до 8—10 мм). Для легированных сталей, имеющих небольшую критическую ско­рость закалки, ступенчатая закалка применима к деталям большого сечения (до 30 мм).

Изотермическую  закалку (кривая 4)проводят так же, как ступенчатую, но с более длительной выдержкой при темпера­туре горячей ванны (250—300° С), чтобы обеспечить полный распад аустенита. Выдержка, необходимая для полного распада аустенита, определяется по точкам а и b и по S-образной кривой (см. рис. 1).

В результате такой закалки сталь приобретает структуру игольча­того троостита с твердостью HRC45 55 и с сохранением необхо­димой пластичности. После изотермической закалки охлаждать сталь можно с любой скоростью.

В качестве охлаждающей среды ис­пользуют расплавленные соли: 55% KNO3 + 45% NaNO2 (темпе­ратура плавления 137° С) и 55% KNO3 + 45% NaNO3 (температура плавления 218° С), допускающие перегрев до необходимой темпера­туры.

  • Изотермическая закалка имеет следующие преимущества перед обычной:
  • минимальное коробление стали и отсутствие трещин; большая вязкость стали.
  • В настоящее время широко используют ступенчатую и изотерми­ческую светлую закалки.

Светлую  закалку стальных деталей проводят в специ­ально оборудованных печах с защитной средой. На некоторых инст­рументальных заводах для получения чистой и светлой поверхности закаленного инструмента применяют ступенчатую закалку с ох­лаждением в расплавленной едкой щелочи.

Перед закалкой инстру­мент нагревают в соляной ванне из хлористого натрия при темпера­туре на 30—50° С выше точки АС1 и охлаждают при 180—200° С в ванне, состоящей из смеси 75% едкого калия и 25% едкого натра сдобавлением 6—8% воды (от веса всей соли).

Смесь имеет тем­пературу плавления около 145° С и, благодаря тому что в ней находится вода, обладает очень высокой закаливающей способ­ностью.

При  ступенчатой  закалке стали с переохлажде­нием аустенита в расплавленной едкой щелочи с последующим окон­чательным охлаждением на воздухе детали приобретают чистую светлую поверхность серебристо-белого цвета; в этом случае отпа­дает необходимость в пескоструйной очистке деталей и достаточна промывка их в горячей воде.

Закалка  с  самоотпуском широко применяется в инструментальном производстве.

Сущность ее состоит в том, что детали не выдерживают в охлаждающей среде до полного охлажде­ния, а в определенный момент извлекают из нее, чтобы сохранить в сердцевине изделия некоторое количество тепла, за счет которого производится последующий отпуск. После достижения требуемой температуры отпуска за счет внутреннего тепла деталь окончатель­но охлаждают в закалочной жидкости.

Проконтролировать отпуск можно по цветам побежалости (см. рис. 2), появляющимся на зачищенной поверхности стали при 220—330° С.

Какие стали не закаливаются 

Рис. 2. Цвета побежалости при отпуске

Закалку ссамоотпуском применяют для зубил, кувалд, слесарных молотков, кернеров и другого инструмента, требующего высокой твердости на поверхности и сохранения вязкой сердцевины.

Способы охлаждения при закалке.

Быстрое охлаждение стальных деталей при закалке является причиной возникновения в них боль­ших внутренних напряжений. Эти напряжения иногда приводят к короблению деталей, а в наиболее тяжелых случаях — к трещинам.

Особенно большие и опасные внутренние напряжения возни­кают при охлаждении в воде. Поэтому там, где можно, следует ох­лаждать детали в масле.

Однако в большинстве случаев для деталей из углеродистой стали это невозможно, так как скорость охлаждения в масле значительно меньше критической скорости, необходи­мой для превращения аустенита в мартенсит.

Следовательно, мно­гие детали из углеродистых сталей рекомендуется закаливать с ох­лаждением в воде, но при этом уменьшать неизбежно возникающие внутренние напряжения. Для этого пользуются некоторыми из описанных способов закалки, в частности, закалкой в двух средах, закалкой с самоотпуском и т. д.

Читайте также:  Как выбрать алмазный круг для заточки

Внутренние напряжения зависят также от способа погружения деталей в закалочную среду. Необходимо придерживаться следую­щих основных правил:

детали, имеющие толстую и тонкую части, погружать в закалоч­ную среду сначала толстой частью;

детали, имеющие длинную вытянутую форму (метчики, сверла развертки), погружать в строго вертикальном положении, иначе они покоробятся (рис. 3).

Какие стали не закаливаются 

Рис. 3. Правильное погружение деталей и инструментов в за­каливающую среду

Иногда по условиям работы должна быть закалена не вся деталь, а лишь часть ее. В этом случае применяют местную закалку: деталь нагревают не полностью, а в закалочную среду погружают целиком. В этом случае закаливается только нагретая часть детали.

Местный нагрев мелких деталей производят в соляной ванне, погружая в нее только ту часть детали, которую требуется закалить; так закаливают, например, центры токарных станков. Можно по­ступать и так: нагреть деталь полностью, а охладить в закалочной среде только ту часть, которая должна быть закалена.

  1. Дефекты, возникающие при закалке стали.
  2. Недостаточ­ная твердость закаленной детали — следствие низкой тем­пературы нагрева, малой выдержки при рабочей температуре или недостаточной скорости охлаждения.
  3.  Исправление де­фекта: нормализация или отжиг с последующей закалкой; при­менение более энергичной закалочной среды.

Перегрев связан с нагревом изделия до температуры, значительно превышающей необходимую температуру нагрева под закалку. Перегрев сопровождается образованием крупнозернистой структуры, в результате чего повышается хрупкость стали.

И справление  дефекта: отжиг (нормализация) и последущая закалка с необходимой температуры.

Пережог возникает при нагреве стали до весьма высоких температур, близких к температуре плавления (1200—1300° С) в окислительной атмосфере. Кислород проникает внутрь стали, и по границам зерен образуются окислы. Такая сталь хрупка и исправить ее невозможно.

Окисление и  обезуглероживание стали ха­рактеризуются образованием окалины (окислов) на поверхности дета­лей и выгоранием углерода в поверхностных слоях.

Этот вид брака термической обработкой неисправим. Если позволяет припуск на механическую обработку, окисленный и обезуглероженный слой нужно удалить шлифованием.

Чтобы предупредить этот вид брака, детали рекомендуется нагревать в печах с защитной атмосфе­рой.

Коробление и трещины — следствия внутренних напряжений.

Во время нагрева и охлаждения стали наблюдаются объемные изменения, зависящие от температуры и структурных пре­вращений (переход аустенита в мартенсит сопровождается увеличе­нием объема до 3%).

Разновременность превращения по объему за­каливаемой детали вследствие различных ее размеров и скоростей охлаждения по сечению ведет к развитию сильных внутренних нап­ряжений, которые служат причиной трещин и коробления деталей в процессе закалки.

Образование трещин обычно наблюдается при температурах ниже 75—100° С, когда мартенситное превращение охватывает значительную часть объема стали.

Чтобы предупредить образова­ние трещин, при конструировании деталей необходимо избегать резких выступов, заостренных углов, резких переходов от тонких сечений к толстым; следует также медленно охлаждать сталь в зоне образования мартенсита (закалка в масле, в двух средах, ступенча­тая закалка). Трещины являются неисправимым браком, коробле­ние же можно устранить последующей рихтовкой или правкой.

Источник: Остапенко Н.Н.,Крапивницкий Н.Н. Технология металлов. М. Высшая школа,1970г.

Способы и режимы закалки и отпуска стали

Термическая обработка сталей — одна из самых важных операций в машиностроении, от правильного проведения которой зависит качество выпускаемой продукции. Закалка и отпуск сталей являются одними из разнообразных видов термообработки металлов.

Тепловое воздействие на металл меняет его свойства и структуру. Это позволяет повысить механические свойства материала, долговечность и надежность изделий, а также уменьшить размеры и массу механизмов и машин. Кроме того, благодаря термообработке, для изготовления различных деталей можно применять более дешевые сплавы.

Также вам не помешает знать, как правильно варить полуавтоматом.

Какие стали не закаливаютсяКак закалялась сталь

Термообработка стали заключается в тепловом воздействии на металл по определенным режимам ля изменения его структуры и свойств.

К операциям термообработки относятся:

  • отжиг;
  • нормализация;
  • старение;
  • закалка стали и отпуск стали (и пр.).

Термообработка стали: закалка отпуск — зависит от следующих факторов:

  • температуры нагрева;
  • времени (скорости) нагрева;
  • продолжительности выдержки при заданной температуре;
  • скорости охлаждения.

Закалка

Закалка стали — это процесс термообработки, суть которого заключается в нагреве стали до температуры выше критической с последующим быстрым охлаждением. В результате этой операции повышаются твердость и прочность стали, а пластичность снижается.

При нагреве и охлаждении сталей происходит перестройка атомной решетки. Критические значения температур у разных марок сталей неодинаковы: они зависят от содержания углерода и легирующих примесей, а также от скорости нагрева и охлаждения.

После закалки сталь становится хрупкой и твердой.

Поверхностный слой изделий при нагреве в термических печах покрывается окалиной и обезуглероживается тем более, чем выше температура нагрева и время выдержки в печи.

Если детали имеют малый припуск для дальнейшей обработки, то брак этот является неисправимым. Режимы закалки закалки стали зависят от ее состава и технических требований к изделию.

Охлаждать детали при закалке следует быстро, чтобы аустенит не успел превратиться в структуры промежуточные (сорбит или троостит). Необходимая скорость охлаждения обеспечивается посредством выбора охлаждающей среды.

При этом чрезмерно быстрое охлаждение приводит к появлению трещин или короблению изделия. Чтобы этого избежать, в интервале температур от 300 до 200 градусов скорость охлаждения надо замедлять, применяя для этого комбинированные методы закалки.

Большое значение для уменьшения коробления изделия имеет способ погружения детали в охлаждающую среду.

Нагрев металла

Все способы закалки стали состоят из:

  • нагрева стали;
  • последующей выдержки для достижения сквозного прогрева изделия и завершения структурных превращений;
  • охлаждения с определенной скоростью.

Изделия из углеродистой стали нагревают в камерных печах. Предварительный подогрев в этом случае не требуется, так как эти марки сталей не подвергаются растрескиванию или короблению.

Сложные изделия (например, инструмент, имеющий выступающие тонкие грани или резкие переходы) предварительно подогревают:

  • в соляных ваннах путем двух-или трехкратного погружения на 2 – 4 секунды;
  • в отдельных печах до температуры 400 – 500 градусов по Цельсию.

Нагрев всех частей изделия должен протекать равномерно. Если это невозможно обеспечить за один прием (крупные поковки), то делаются две выдержки для сквозного прогрева.

Если в печь помещается только одна деталь, то время нагрева сокращается. Так, например, одна дисковая фреза толщиной 24 мм нагревается в течение 13 минут, а десять таких изделий – в течение 18 минут.

Защита изделия от окалины и обезуглероживания

Для изделий, поверхности которых после термообработки не шлифуются, выгорание углерода и образование окалины недопустимо.

Защищают поверхности от подобного брака применением защитных газов, подаваемых в полость электропечи. Разумеется, такой прием возможен только в специальных герметизированных печах.

Источником подаваемого в зону нагрева газа служат генераторы защитного газа. Они могут работать на метане, аммиаке и других углеводородных газах.

Если защитная атмосфера отсутствует, то изделия перед нагревом упаковывают в тару и засыпают отработанным карбюризатором, чугунной стружкой (термисту следует знать, что древесный уголь не защищает инструментальные стали от обезуглероживания). Чтобы в тару не попадал воздух, ее обмазывают глиной.

Соляные ванны при нагреве не дают металлу окисляться, но от обезуглероживания не защищают. Поэтому на производстве их раскисляют не менее двух раз в смену бурой, кровяной солью или борной кислотой. Соляные ванны, работающие на температурах 760 – 1000 градусов Цельсия, весьма эффективно раскисляются древесным углем.

Для этого стакан, имеющий множество отверстий по всей поверхности, наполняют просушенным углем древесным, закрывают крышкой (чтобы уголь не всплыл) и после подогрева опускают на дно соляной ванны. Сначала появляется значительное количество языков пламени, затем оно уменьшается.

Если в течение смены таким способом трижды раскислять ванну, то нагреваемые изделия будут полностью защищены от обезуглероживания.

Степень раскисления соляных ванн проверяется очень просто: обычное лезвие, нагретое в ванне в течение 5 – 7 минут в качественно раскисленной ванне и закаленное в воде, будет ломаться, а не гнуться.

Охлаждающие жидкости

Основной охлаждающей жидкостью для стали является вода. Если в воду добавить небольшое количество солей или мыла, то скорость охлаждения изменится.

Поэтому ни в коем случае нельзя использовать закалочный бак для посторонних целей (например, для мытья рук). Для достижения одинаковой твердости на закаленной поверхности необходимо поддерживать температуру охлаждающей жидкости 20 – 30 градусов.

Не следует часто менять воду в баке. Совершенно недопустимо охлаждать изделие в проточной воде.

Недостатком водяной закалки является образование трещин и коробления. Поэтому таким методом закаливают изделия только несложной формы или цементированные.

  • При закалке изделий сложной конфигурации из конструкционной стали применяется пятидесятипроцентный раствор соды каустической (холодный или подогретый до 50 – 60 градусов). Детали, нагретые в соляной ванне и закаленные в этом растворе, получаются светлыми. Нельзя допускать, чтобы температура раствора превышала 60 градусов.

Какие стали не закаливаютсяРежимы

Пары, образующиеся при закалке в растворе каустика, вредны для человека, поэтому закалочную ванну обязательно оборудуют вытяжной вентиляцией.

  • Закалку легированной стали производят в минеральных маслах. Кстати, тонкие изделия из углеродистой стали также проводят в масле. Главное преимущество масляных ванн заключается в том, что скорость охлаждения не зависит от температуры масла: при температуре 20 градусов и 150 градусов изделие будет охлаждаться с одинаковой скоростью.

Следует остерегаться попадания воды в масляную ванну, так как это может привести к растрескиванию изделия. Что интересно: в масле, разогретом до температуры выше 100 градусов, попадание воды не приводит к появлению трещин в металле.

Читайте также:  Реверсивный пускатель схема подключения монтажная

Недостатком масляной ванны является:

  1. выделение вредных газов при закалке;
  2. образование налета на изделии;
  3. склонность масла к воспламеняемости;
  4. постепенное ухудшение закаливающей способности.
  • Стали с устойчивым аустенитом (например, Х12М) можно охлаждать воздухом, который подают компрессором или вентилятором. При этом важно не допускать попадания в воздухопровод воды: это может привести к образованию трещин на изделии.
  • Ступенчатая закалка выполняется в горячем масле, расплавленных щелочах, солях легкоплавких.
  • Прерывистая закалка сталей в двух охлаждающих средах применяется для обработки сложных деталей, изготовленных из углеродистых сталей. Сначала их охлаждают в воде до температуры 250 – 200 градусов, а затем в масле. Изделие выдерживается в воде не более 1 – 2 секунд на каждые 5 – 6 мм толщины. Если время выдержки в воде увеличить, то на изделии неизбежно появятся трещины. Перенос детали из воды в масло следует выполнять очень быстро.

Процесс отпуска

Отпуску подвергаются все закаленные детали. Это делается для снятия внутренних напряжений. В результате отпуска несколько снижается твердость и повышается пластичность стали.

В зависимости от требуемой температуры отпуск производится :

  • в масляных ваннах;
  • в селитровых ваннах;
  • в печах с принудительной воздушной циркуляцией;
  • в ваннах с расплавленной щелочью.

Температура отпуска зависит от марки стали и требуемой твердости изделия, например, инструмент, для которого необходима твердость HRC 59 – 60, следует отпускать при температуре 150 – 200 градусов.

В этом случае внутренние напряжения уменьшаются, а твердость снижается незначительно.

Быстрорежущая сталь отпускается при температуре 540 – 580 градусов. Такой отпуск называют вторичным отвердением, так как в результате твердость изделия повышается.

Изделия можно отпускать на цвет побежалости, нагревая их на электроплитах, в печах, даже в горячем песке. Окисная пленка, которая появляется в результате нагрева, приобретает различные цвета побежалости, зависящие от температуры. Прежде чем приступать к отпуску на один из цветов побежалости, надо очистить поверхность изделия от окалины, нагара масла и т. д.

Обычно после отпуска металл охлаждают на воздухе. Но хромоникелевые стали следует охлаждать в воде или масле, так как медленное охлаждение этих марок приводит к отпускной хрупкости.

Как при закалке изменяются свойства низкоуглеродистых сталей

Закалкой называют вид термической обработки металлов, который заключается в нагреве выше критической температуры с последующим резким охлаждением (обычно) в жидких средах. Критической называют температуру, при которой происходит изменение типа кристаллической решетки, то есть осуществляется полиморфное превращение. Она определяется она по диаграмме «железо-углерод».

Свойства стали после закалки

После закалки увеличивается твердость и прочность стали, но при этом повышаются внутренние напряжения и возрастает хрупкость, провоцирующие разрушение материала при резких механических воздействиях. На поверхности изделия появляется толстый слой окалины, который необходимо учитывать при определении припусков на обработку.

Внимание! Некоторые изделия закаляются частично, например, это может быть только режущая кромка инструмента или холодного оружия. В этом случае на поверхности изделия можно наблюдать четкую границу, разделяющую закаленную и незакаленную части. Закаленную часть на клинках называют «хамон», что в переводе на современный язык металлургии означает «мартенсит».

  Никель — это что такое? Свойства никеля

Определение! Мартенсит – основная составляющая структуры стали после закалки. Вид этой микроструктуры – игольчатый или реечный.

Для уменьшения внутренних напряжений и роста пластичности осуществляют следующий этап термообработки – отпуск. При отпуске происходит некоторое снижение твердости и прочности.

Закалочные среды [ править | править код ]

При закалке для переохлаждения аустенита до температуры мартенситного превращения требуется быстрое охлаждение, но не во всём интервале температур, а только в пределах 650—400 °C, то есть в том интервале температур, в котором аустенит менее всего устойчив и быстрее всего превращается в ферритно-цементитную смесь. Выше 650 °C скорость превращения аустенита мала, и поэтому смесь при закалке можно охлаждать в этом интервале температур медленно, но, конечно, не настолько, чтобы началось выпадение феррита или превращение аустенита в перлит.

Механизм действия закалочных сред (вода, масло, водополимерная закалочная среда, а также охлаждение деталей в растворах солей) следующий.

В момент погружения изделия в закалочную среду вокруг него образуется плёнка перегретого пара, охлаждение происходит через слой этой паровой рубашки, то есть относительно медленно.

Когда температура поверхности достигает некоторого значения (определяемого составом закаливающей жидкости), при котором паровая рубашка разрывается, то жидкость начинает кипеть на поверхности детали, и охлаждение происходит быстро.

Читать также: До скольки часов можно сверлить

Первый этап относительно медленного кипения называется стадией плёночного кипения, второй этап быстрого охлаждения — стадией пузырькового кипения. Когда температура поверхности металла ниже температуры кипения жидкости, жидкость кипеть уже не может, и охлаждение замедлится. Этот этап носит название конвективного теплообмена.

Технология закалки

Режим закалки определяется температурой, временем выдержки, скоростью охлаждения, используемой охлаждающей средой.

Способы закалки стали:

  • в одном охладителе – применяется при работе с деталями несложной конфигурации из углеродистых и легированных сталей;
  • прерывистый в двух средах – востребован для обработки высокоуглеродистых марок, которые сначала остужают в быстро охлаждающей среде (воде), а затем в медленно охлаждающей (масле);
  • струйчатый – обычно востребован при частичной закалке изделия, осуществляется в установках ТВЧ и индукторах обрызгиванием детали мощной струей воды;
  • ступенчатый – процесс, при котором деталь остывает в закалочной среде, приобретая во всех точках сечения температуру закалочной ванны, окончательное охлаждение осуществляют медленно;
  • изотермический – похож на предыдущий вид закалки стали, отличается от него временем пребывания в закалочной среде.

Типы охлаждающих сред

От правильного выбора охлаждающей среды во многом зависит конечный результат процесса.

  • Для поверхностной закалки и работы с изделиями простой конфигурации, предназначенными для дальнейшей обработки, применяется в основном вода. Она не должна содержать соли и примеси моющих средств, оптимальная температура +30°C.
  • Внимание! Использовать этот способ охлаждения для деталей сложной конфигурации не рекомендуется из-за риска появления трещин.

  • Для изделий сложной формы применяют 50% раствор каустической соды, который нагревают до +60°C. При использовании такого состава для охлаждения сталь приобретает светлый оттенок. Пары каустической соды вредны для здоровья человека.
  • Для тонкостенных деталей, изготовленных из углеродистых и легированных сталей, применяются минеральные масла, обеспечивающие постоянную температуру охлаждения, не зависящую от температуры окружающей среды. Главное условие, которое необходимо соблюдать при охлаждении сталей после закалки, – отсутствие воды в минеральных маслах. Недостатки процесса: выделение вредных для человека паров, возможность возгорания масла, образование налета, постепенная потеря эффективности охлаждающего состава.

Внимание! Для работы с изделиями из углеродистых сталей со сложным химическим составом используют комбинированное охлаждение. Оно состоит из двух этапов. Первый – охлаждение детали в воде, второй, после +200°C, – в масляной ванне. Перемещение из одной охлаждающей среды в другую должно производиться очень быстро.

Что такое закалка металлов и ее виды

Под закалкой понимают вид термообработки металла, состоящий из его нагрева до температуры, при достижении которой наступает изменение структуры кристаллической решетки (полиморфное превращение) и дальнейшего ускоренного охлаждения в воде или масляной среде. Целью такой термообработки является повышение твердости металла.

Применяется также закалка, при которой температура нагрева металла не дает состояться полиморфному превращению. В этом случае фиксируется его состояние, которое свойственно металлу при температуре нагрева. Это состояние называют пересыщенным твердым раствором.

Технологию закалки с полиморфным превращением используют в основном для изделий из стальных сплавов. Цветные металлы подвергают закалке без достижения полиморфного изменения.

После такой обработки стальные сплавы становятся тверже, но при этом они приобретают повышенную хрупкость, теряя пластичность.

Чтобы снизить нежелательную хрупкость после нагрева с полиморфным изменением, применяется термообработка, называемая отпуском. Она проводится при более низкой температуре с постепенным дальнейшим охлаждением металла. Таким способом снимается напряжение металла после процесса закаливания, и уменьшается его хрупкость.

При закалке без полиморфного превращения нет проблемы с излишней хрупкостью, но твердость сплава не достигает требуемого значения, поэтому при повторной термической обработке, называемой старением, ее наоборот повышают за счет распада пересыщенного твердого раствора.

Особенности закалки стали

Закаливаются в основном нержавеющие стальные изделия и сплавы, предназначенные для их изготовления. Они имеют мартенситную структуру и характеризуются повышенной твердостью, приводящей к хрупкости изделий.

Если провести термообработку таких изделий с нагревом до определенной температуры с последующим быстрым отпуском, то можно добиться повышения вязкости. Это позволит использовать такие изделия в различных сферах.

Виды закаливания сталей

В зависимости от предназначения нержавеющих изделий, можно провести закалу всего предмета или только той его части, которая должна быть рабочей и иметь повышенные прочностные характеристики.

Поэтому закалку нержавеющих изделий подразделяют на два способа: глобальный и локальный.

Охлаждающая среда

Достижение необходимых свойств нержавеющих материалов во многом зависит от выбора способа их охлаждения.

Разные марки нержавеющих сталей подвергаются охлаждению по-разному. Если низколегированные стали охлаждают в воде или ее растворах, то для нержавеющих сплавов для этих целей применяют масляные растворы.

Важно: При выборе среды, в которой проводят охлаждение металла после нагрева, следует учитывать, что в воде охлаждение проходит быстрее, чем в масле! Например, вода температурой 18°C способна охладить сплав на 600°C за секунду, а масло всего на 150°C.

Для того, чтобы получить высокую твердость металла, охлаждение проводят в проточной холодной воде. Также для повышения эффекта закалки для охлаждения готовят соляной раствор, добавляя в воду около 10% поваренной соли, или используют кислотную среду, в которой не менее 10% кислоты (чаще серной).

Кроме выбора охлаждающей среды немаловажным является режим и скорость охлаждения. Скорость снижения температуры должна быть не меньше 150°C за секунду.

Читайте также:  Цена деления штангенциркуля равна

Таким образом, за 3 секунды температура сплава должна снизиться до 300°C. Дальнейшее снижение температуры может проводиться с любой скоростью, т. к.

зафиксированная в результате быстрого охлаждения структура при низких температурах уже не разрушится.

Важно: Слишком быстрое охлаждение металла приводит к его излишней хрупкости! Это следует учитывать при самостоятельной закалке.

Различают следующие способы охлаждения:

  • С использованием одной среды, когда изделие помещают в жидкость и держат там до полного охлаждения.
  • Охлаждение в двух жидких средах: масле и воде (или солевом растворе) для нержавеющих сталей. Изделия из углеродистых сталей сначала охлаждают в воде, т. к. она является быстро охлаждающей средой, а потом в масле.
  • Струйным методом, когда деталь охлаждается струей воды. Это очень удобно, когда требуется закалить определенную область изделия.
  • Методом ступенчатого охлаждения с соблюдением температурных режимов.

Читать также: Сечение кабеля для электроплиты 220

Температурный режим

Правильный температурный режим проведения закалки нержавеющих изделий является важным условием их качества. Для достижения хороших характеристик их равномерно прогревают до 750-850°C, а потом быстро проводят охлаждение до температуры 400-450°C.

Важно: Нагрев металла выше точки рекристаллизации приводит к крупнозернистому строению, ухудшающему его свойства: излишней хрупкости, приводящей к растрескиванию!

Для снятия напряжения после нагрева до нужной температуры упрочнения металла, иногда используют поэтапное охлаждение изделий, постепенно снижая температуру на каждом из этапов нагрева. Такая технология позволяет полностью снять внутренние напряжения и получить прочное изделие с нужной твердостью.

Какие стали можно закаливать?

Процедурам закалки и отпуска не подвергается прокат и изделия из него, изготовленные из малоуглеродистых сталей типа 10, 20, 25. Этот вид термообработки эффективен для углеродистых сталей (45, 50) и инструментальных, у которых в результате твердость увеличивается в три-четыре раза.

Таблица режимов закалки и областей применения для некоторых видов инструментальных сталей

Марка стали Для какого инструмента используется Температура закалки, °C Температура отпуска, °C Охлаждающая среда для закалки Охлаждающая среда для отпуска
У7 Молотки, кувалды, плотницкий инструмент 800 170 Вода Вода, масло
У7А Зубила, отвертки, клейма, топоры 800 170 Вода Вода, масло
У8, У8А Пуансоны, матрицы, стамески, пробойники, ножовочные ручные полотна 800 170 Вода Вода, масло
У10, У10А Деревообрабатывающий инструмент, керны, резцы строгальные и токарные 790 180 Вода Вода, масло
У11 Метчики 780 180 Вода Вода, масло
У12 Надфили 780 180 Вода Вода, масло
Р9 Метчики, ножовочные полотна станочные, сверла по металлу, фрезы 1250 580 Масло Воздух в печи
Р18 Ножовочные полотна станочные, сверла по металлу, фрезы 1300 580 Масло Воздух в печи
ШХ6 Напильники 810 200 Масло Воздух
ШХ15 Ножовочные полотна станочные 845 400 Масло Воздух
9ХС Плашки, сверла спиральные по дереву 860 170 Масло Воздух

Как закалить сталь в домашних условиях?

Закалку и отпуск желательно осуществлять в производственных условиях с использованием специального оборудования и приборов. Однако домашние умельцы часто практикуют это в собственных мастерских.

Для нагрева изделия используют электроплиты, духовки, раскаленный песок, паяльные лампы, костер. Самостоятельная термообработка оправдана в случае необходимости упрочнения режущей кромки инструмента.

Как сделать закаленную сталь:

  • перед термообработкой изделие необходимо очистить от масла и ржавчины;
  • равномерно разогреть;
  • охладить и произвести отпуск в соответствии с режимами, рекомендованными для конкретной марки стали.

При необходимости проведения термообработки в домашних условиях в отсутствии приборов температуру металла ориентировочно определяют по цветам побежалости. Условие – помещение не должно быть освещено солнцем.

Определение! Цветами побежалости называют оксидные пленки, образующиеся без участия молекул воды на сплавах на основе железа во время нагрева. Каждому интервалу температур соответствует определенный цвет:

  • темно-коричневый – 530-580°C;
  • коричнево-красный – 580-650°C;
  • вишневый – 650-730°C;
  • вишнево-красный – 730-770°C;
  • вишнево-алый – 770-800°C;
  • светло-вишнево-алый – 800-830°C;
  • ярко-красный – 830-870°C;
  • красный – 870-900°C;
  • оранжевый – 900-1050°C;
  • темно-желтый – 1050-1150°C;
  • светло-желтый – 1150-1250°C;
  • желто-белый – 1250-1300°C;

ослепительно белый – более 1300°C.

Что нужно знать о стали марки 35 | Полезные статьи о металлопрокате

Сталь марки 35 относят к разряду конструкционных углеродистых и качественных. Наиболее активно используют в строительстве и машиностроении, где в полной мере проявляются основные ее преимущественные свойства: твердость и податливость к разноплановым обработкам.

Производят сталь 35, согласно ГОСТу 1050-88, регламентирующему все важные моменты, включая химический состав, механические свойства, твердость, способы обработки.

Химический состав, основные характеристики

Уже в обозначении стали 35 – характеристики сплава. Простая цифровая информация указывает, пожалуй, на самое важное – процентное содержание углерода при незначительном объеме примесей, что и определяет целый ряд востребованных потребителем свойств.

Химические элементы в процентном соотношении распределены следующим образом: Fe – примерно 97, C – 0,32- 0,4, Si – 0,17- 0,37, Mn – 0,5-0,8. Ni, Cr, Cu составляют по 0,25, а вот P, S и As – соответственно, 0,035, 0,040 и 0,08.

Сталь 35, характеристики ее, обусловлены принадлежностью к классу среднеуглеродистых сплавов, куда также входят стали марок 30, 40, 45 и 50. Сырье отличается высокими прочностными свойствами, при этом не обладает ни пластичностью, ни вязкостью низколегированных сталей, что, впрочем, и не требуется. Механические свойства подробно расписаны в таблицах ГОСТа 1050-88

Механические свойства, не менее Предел текучести, H/мм2 (кгс/мм2) Временное сопротивление разрыву, H/мм2 (кгс/мм2) Ударная вязкость KCU, Дж/см2 (кгс * м/см2) Относительное удлинение Относительное сужение %
315(32) 530(54) 69(7) 20 45

Способы обработки стали 35

В процессе производства металлопроката, деталей сталь 35 подвергают:

  • нормализации (отжигу);
  • закалке с низким отпуском;
  • закалке ТВЧ.

Сырье куют при температурном режиме от 1280 оС до 750 оС  с последующим охлаждением, обрабатывают резанием, применяя технологию оптимального отжига, повышающего предел упругости сплава.

Что касается свариваемости, то в ГОСТе данную возможность классифицируют как ограниченную. Если сталь 20 сваривается без ограничений, за исключением деталей, прошедших химико-термическую подготовку, то марка стали 35 «более требовательна» — необходим подогрев и специальная термообработка. Основные рекомендуемые способы сваривания – РДС, ЭШС, АДС под флюсом с газовой защитой.

Сталь 35 (ГОСТ 1050-88) проходит закалку. По сути, это нагрев сплава до температуры выше критической или, как еще уточняют, температуры растворения избыточных фаз.

В результате из структуры аустенита образуется неустойчивая, метастабильная структура мартенсит. Так, для стали 35 температура закалки составляет от 850 до 870 оС. После ее проведения твердость стали 35 – 45 HRC.

Таблицы твердости проката после обработки ниже:

твердость HB, не более для горячекатаного и кованного проката для калиброванного проката и со специальной отделкой поверхности без термической обработки после отжига или высокого отпуска нагартованного отожженного или высокоотпущенного
207 229 187
твердость, HB, не более временное сопротивление относительное сужение, %, не менее
после отпуска или обычного отжига после сфероидизирующего отжига
прокат горячекатаный и горячекатаный со специальной отделкой поверхности прокат калиброванный и калиброванный со специальной отделкой поверхности
163 187 — не более 590(60) не более 540 (55) 45

Для данной марки рекомендуют закалку с низким отпуском. Это означает, что обработку лучше проводить при температуре не выше 160 — 200 оС. При таких условиях происходит требуемое снижение закалочных напряжений, мартенсит превращается уже в отпущенный мартенсит без заметного снижения твердости стали 35, повышается ее прочность, улучшается вязкость.

О применении сплава

Сталь 35 (ГОСТ 1050-88), характеристики и ее основные эксплуатационные свойства неизменно востребованы многими строительными компаниями и организациями, машиностроительными и станко-инструментальными заводами.

Металлоконструкции, в том числе, и арматурные, фасонный прокат (круг, шестигранник ст35), а также валы различного назначения, оси и цилиндры, шестерни, шатуны и диски, шпиндели и траверсы – все это производят из конструкционной углеродистой качественной стали марки 35.

Здесь есть смысл заметить, что данный среднеуглеродистый сплав редко применяют при изготовлении некоторых крупногабаритных деталей и механизмов, поскольку сырье тяжело прокаливать. К тому же имеют место потери в механических показателях.

Виды поставки и ГОСТы

Твердость и плотность стали 35, ее практичность и невысокая стоимость оценена многими отечественными потребителями. Благодаря существованию стали 35 с ее характеристиками, пока еще ждут применения:

Фасонный прокат проверенного заводского качества, выполненный в соответствии с ГОСТами 2590-2006 (круг г/к ст. 35), 2879-2006, 2591-2006, 8509-93, 8240-97, 8510-86, 8239-89, 10702-78.

  • листы толстые (ГОСТы 1577-93, 19903-74, 4041-71);
  • листы тонкие (ГОСТ 16523-97);
  • шлифованный пруток, серебрянка (ГОСТы 10702-78 и 14955-77);
  • калиброванные круги (ГОСТы 8560-78, 7417-75, 8559-75, 10702-78);
  • полосы (ГОСТы, 103-2006, 82-70,1577-93);
  • ленты (ГОСТ 2284-79);
  • проволока (ГОСТы, 5663-79 и 17305-91);
  • поковки, кованые заготовки по ГОСТам 8479-70 и 1133-71;
  • трубы в соответствии с ГОСТами 8731-74, 8734-75, 8732-78 и 8733-74.
Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]