Стабилизатор напряжения: обозначение на схеме

Для того чтобы правильно прочитать и понять, что означает та или иная схема или чертеж, связанные с электричеством, необходимо знать, как расшифровываются изображенные на них значки и символы.

Большое количество информации содержат буквенные обозначения элементов в электрических схемах, определяемые различными нормативными документами.

Все они отображаются латинскими символами в виде одной или двух букв.

Однобуквенная символика элементов

Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Буквенные обозначения соответствуют ГОСТу 2.710-81. Например, буква «А» относится к группе «Устройства», состоящей из лазеров, усилителей, приборов телеуправления и других.

Точно так же расшифровывается группа, обозначаемых символом «В». Она состоит из устройств, преобразующих неэлектрические величины в электрические, куда не входят генераторы и источники питания. Эта группа дополняется аналоговыми или многоразрядными преобразователями, а также датчиками для указаний или измерений.

Сами компоненты, входящие в группу, представлены микрофонами, громкоговорителями, звукоснимателями, детекторами ионизирующих излучений, термоэлектрическими чувствительными элементами и т.д. Стабилизатор напряжения: обозначение на схеме Все буквенные обозначения, соответствующие наиболее распространенным элементам, для удобства пользования объединены в специальную таблицу:

Первый буквенный символ, обязательный для отражения в маркировке Группа основных видов элементов и приборов Элементы, входящие в состав группы (наиболее характерные примеры)
A Устройства Лазеры, мазеры, приборы телеуправления, усилители.
B Аппаратура для преобразования неэлектрических величин в электрические (без генераторов и источников питания), аналоговые и многозарядные преобразователи, датчики для указаний или измерений Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.
C Конденсаторы Конденсаторы с различной емкостью
D Микросборки, интегральные схемы Интегральные схемы цифровые и аналоговые, устройства памяти и задержки, логические элементы.
E Разные элементы Различные виды осветительных устройств и нагревательных элементов.
F Обозначение предохранителя на схеме, разрядников, защитных устройств Плавкие предохранители, разрядники, дискретные элементы защиты по току и напряжению.
G Источники питания, генераторы, кварцевые осцилляторы Аккумуляторные батареи, источники питания на электрохимической м электротермической основе.
H Устройства для сигналов и индикации Индикаторы, приборы световой и звуковой сигнализации
K Контакторы, реле, пускатели Реле напряжения и тока, реле времени, электротепловые реле, магнитные пускатели, контакторы.
L Дроссели, катушки индуктивности Дроссели в люминесцентном освещении.
M Двигатели Двигатели постоянного и переменного тока.
P Измерительные приборы и оборудование Счетчики, часы, показывающие, регистрирующие и измерительные приборы.
Q Выключатели и разъединители в силовых цепях Силовые автоматические выключатели, короткозамыкатели, разъединители.
R Резисторы Варисторы, переменные резисторы, терморезисторы, потенциометры.
S Коммутационные устройства в цепях сигнализации, управления, измерительных приборах Различные типы выключателей и переключателей, а также выключатели, срабатывающие действием различных факторов.
T Трансформаторы, автотрансформаторы Стабилизаторы, трансформаторы напряжения и тока.
U Различные типы преобразователей и устройства связи Выпрямители, модуляторы, демодуляторы, дискриминаторы, преобразователи частоты, инверторы.
V Полупроводниковые и электровакуумные приборы Диоды, тиристоры, транзисторы, стабилитроны, электронные лампы.
W Антенны, линии и элементы, работающие на сверхвысоких частотах. Антенны, волноводы, диполи.
X Контактные соединения Гнезда, токосъемники, штыри, разборные соединения.
Y Механические устройства с электромагнитным приводом Тормоза патроны, электромагнитные муфты.
Z Оконечные устройства, ограничители, фильтры Кварцевые фильтры, линии моделирования.

Буквенные обозначения из двух символов

Для более точной расшифровки и обозначении элементов на электрических схемах используются двухбуквенные, а в некоторых случаях и многобуквенные обозначения.

Маркировка выполняется не только символом общего кода элемента, но и дополнительными буквами, более полно раскрывающими характеристики каждого элемента.

С целю упорядочения подобной символики также создана таблица в соответствии с ГОСТом 2.710-81:

Первый буквенный символ, обязательный для отражения в маркировке Группа основных видов элементов и приборов Элементы, входящие в состав группы (наиболее характерные примеры) Символы двухбуквенного кода
A Устройства общего назначения
B Различные виды аналоговых или многозарядных преобразователей, указательные или измерительные датчики, устройства, преобразующие неэлектрические величины в электрические, за исключением генераторов и источников питания Громкоговорители BA
Магнитострикционные элементы BB
Детекторы ионизирующих элементы BD
Приемники – сельсины BE
Капсюли – телефоны BF
Датчики – сельсины BC
Тепловые датчики BK
Фотоэлементы BL
Микрофоны BM
Датчики давления BP
Пьезоэлементы BQ
Датчики частоты вращения – тахогенераторы BR
Звукосниматели BS
Датчики скорости BV
C Конденсаторы
D Интегральные схемы, микросборки Схемы интегральные аналоговые DA
Схемы интегральные, цифровые, логические элементы DD
Устройства хранения информации DS
Устройства задержки DT
E Разные элементы Нагревательные элементы EK
Осветительные лампы EL
Пиропатроны ET
F Защитные устройства, предохранители, разрядники Дискретные элементы токовой защиты мгновенного действия FA
Дискретные элементы токовой защиты инерционного действия FP
Плавкие предохранители FU
Дискретные элементы защиты по напряжению, разрядники FV
G Генераторы и другие источники питания Батареи GB
H Индикаторные и сигнальные элементы Приборы звуковой сигнализации HA
Символьные индикаторы HG
Приборы световой сигнализации HL
K Контакторы, пускатели, реле Токовые реле KA
Указательные реле KH
Электротепловые реле KK
Контакторы, магнитные пускатели KM
Реле времени KT
Реле напряжения KV
L Дроссели, катушки индуктивности Дроссели люминесцентных светильников LL
M Двигатели
P Измерительные приборы и оборудование (недопустимо использование маркировки РЕ) Амперметры PA
Счетчики импульсов PC
Частотометры PF
Счетчики активной энергии PI
Счетчики реактивной энергии PK
Омметры PR
Регистрирующие приборы PS
Измерители времени действия, часы PT
Вольтметры PV
Ваттметры PW
Q Выключатели и разъединители в силовых цепях Автоматические выключатели QF
Короткозамыкатели QK
Разъединители QS
R Резисторы Терморезисторы RK
Потенциометры RP
Шунты измерительные RS
Варисторы RU
S Коммутационные устройства в цепях измерения, управления и сигнализации Выключатели и переключатели SA
Выключатели кнопочные SB
Выключатели автоматические SF
Выключатели, срабатывающие под действием различных факторов:— от уровня SL
— от давления SP
— от положения (путевые) SQ
— от частоты вращения SR
— от температуры SK
T Трансформаторы, автотрансформаторы Трансформаторы тока TA
Электромагнитные стабилизаторы TS
Трансформаторы напряжения TV
U Устройства связи, преобразователи неэлектрических величин в электрические Модуляторы UB
Демодуляторы UR
Дискриминаторы UI
Выпрямители, генераторы частоты, инверторы, преобразователи частоты UZ
V Приборы полупроводниковые и электровакуумные Диоды, стабилитроны VD
Электровакуумные приборы VL
Транзисторы VT
Тиристоры VS
W Антенны, линии и элементы СВЧ Ответвители WE
Короткозамыкатели WK
Вентили WS
Трансформаторы, фазовращатели WT
Аттенюаторы WU
Антенны WA
X Контактные соединения Скользящие контакты, токосъемники XA
Штыри XP
Гнезда XS
Разборные соединения XT
Высокочастотные соединители XW
Y Механические устройства с электромагнитным приводом Электромагниты YA
Тормоза с электромагнитными приводами YB
Муфты с электромагнитными приводами YC
Электромагнитные патроны или плиты YH
Z Ограничители, устройства оконечные, фильтры Ограничители ZL
Кварцевые фильтры ZQ

Кроме того, в ГОСТе 2.710-81 определены специальные символы для обозначения каждого элемента.

Стабилизатор напряжения: обозначение на схеме

Чтение схем: стабилизаторы | Каталог самоделок

Многие современные электроустройства для своей стабильной работы требуют поддержания уровня  напряжения на определенно заданном уровне, то есть его стабилизации. Общеизвестный пример – холодильник или кондиционер.

Кроме всего прочего есть и другие причины, требующие стабилизации напряжения, а иногда и тока. Так, например, при предельно высоком напряжении срок службы некоторых деталей  в электротехнических устройствах резко снижается.

Так и при изменении напряжения меняются и характеристики полупроводниковых приборов, которые способны расстроить работу устройств.

Стабилизация электрического тока  достигается многими способами. В данной статье рассматриваются самые распространенные обозначения, которые наиболее часто употребляются в схемах.

Феррорезонансный стабилизатор. Данный вид стабилизатора на схемах обозначается практически также как и трансформатор с нелинейным регулированием – № 1.

Читайте также:  Схема импульсного паяльника своими руками

(Подробнее об обозначениях трансформаторов).  Кроме того его позиционное обозначение укажет на то, что это стабилизатор.

Для того, чтобы указать подробнее внутренние соединения используется обозначение под № 2.

Стабилизатор напряжения: обозначение на схеме

Здесь, изображение указывает на то, что в сборке присутствуют 2 трансформатора. Где первичные обмотки соединены последовательно – точки, которые обозначают начало обмотки, расположены с одной стороны, а вторички встречно – точки расположены с разных сторон. Ломаная красная черта обозначает нелинейное регулирование.

Полупроводниковые стабилизаторы – стабилитроны (диоды лавинные выпрямители). № 3 – односторонний полупроводниковый стабилизатор,  № 4 – двусторонний полупроводниковый стабилизатор.

Ионные стабилизаторы приведены на иллюстрации № 5. Где «А» – анод, «К» – катод, «Г» – газовый наполнитель.

На рисунке №№ 6-8 приведены примеры упрощенных изображений стабилизаторов.

№ 6 – простой стабилизатор, на что указывают буквы «*ST», № 7 – стабилизатор напряжения, на что указывает буква «U», № 8 – стабилизатор тока – «. Звездочка перед буквенными обозначениями указывает, что стабилизатор – нелогический элемент.

Стабилизатор напряжения обозначение на схеме

Типичные реализации источника, генератора тока

Приведенные схемы обладают рядом серьезных недостатков. Схема A1

на полевом транзисторе – одна из худших реализаций. Рассчитать ее параметры невозможно, так как они зависят от индивидуальных особенностей экземпляра полевого транзистора. Нужный ток устанавливается подбором резистора. Схема может функционировать, когда сопротивление резистора равно 0.

Дифференциальное сопротивление (а значит стабильность тока) схемы невысоко, нередко оно бывает меньше 200 кОм. На работу этого варианта сильно влияет температура полевого транзистора. Преимущество одно – это действительно двухполюсник. Он не требует подвода дополнительного питания.

Это бывает очень важно в некоторых схемах.

Схема A2

обладает гораздо лучшими характеристиками. В случае применения транзисторов с большим коэффициентом передачи тока, схема может иметь дифференциальное сопротивление выше 1 МОм (10 МОм, или даже больше). Но вывода у схемы не два, а три.

Так что она может быть включена только в некоторые электронные схемы, в которых один вывод источника тока подключен к шине питания или общему проводу, и есть возможность подвести к одному из выводов общий провод или питание соответственно. На рисунке приведена схема с подключением к шине питания.

Схема с подключением к общему проводу выглядит совершенно аналогично с той разницей, что ее надо перевернуть и поменять проводимость транзистора и полярность стабилитрона.

  Блок питания не держит нагрузку причины

Читать также: Держатель резцов станка тш3 01

Обратите внимание, что в схеме в качестве источника опорного напряжения используется стабилитрон. Для стабилитронов характерна зависимость напряжения стабилизации от температуры.

Помните об этом при проектировании источников тока. Стабилитрон может быть источником шумов.

Чтобы уменьшить их влияние на работу устройства параллельно стабилитрону можно подключить керамический конденсатор емкость 0.1 мкФ.

Какие существуют аналоги

Для некоторых приборов серии 142 существуют полные зарубежные аналоги:

Микросхема К142 Зарубежный аналог
КРЕН12 LM317
КРЕН18 LM337
КРЕН5А (LM)7805C
КРЕН5Б (LM)7805C
КРЕН8А (LM)7806C
КРЕН8Б (LM)7809C
КРЕН8В (LM)78012C
КРЕН6 (LM)78015C
КРЕН2Б UA723C

Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему.

Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует.

Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.

Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5).

Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г.

И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.

Расчет транзисторного источника тока

Принцип действия приведенной схемы основан на том, что напряжение на резисторе R1

поддерживается равным напряжению на стабилитроне минус напряжение насыщения эмиттерного перехода транзистора. Напряжение на резисторе пропорционально току нагрузки.

Так что этот ток также поддерживается на заданном уровне. Если ток нагрузки падает, то напряжение на резисторе также падает. Ток базы транзистора растет, что приводит к открытию транзистора и росту тока.

Если ток нагрузки растет, то транзистор наоборот закрывается.

Ориентировочный расчет транзисторного источника тока можно выполнить так. Выбираем стабилитрон. Вычисляем напряжение на резисторе R1.

  • [Напряжение на резисторе R1, В
  • ] = [Напряжение стабилизации стабилитрона, В ] – [
  • Напряжение насыщения эмиттерного перехода транзистора, В

]

  1. Исходя из необходимой силы тока, определяем сопротивление резистора R1.
  2. [Сопротивление резистора R1, Ом
  3. ] = [Напряжение на резисторе R1, В ] / [
  4. Необходимая сила тока источника, А
  5. [Сопротивление резистора R2, Ом
  6. ] = 0.8 * ([Напряжение питания, В ] – [
  7. Напряжение стабилизации стабилитрона, В
  8. Коэффициент передачи тока транзистора
  9. Необходимая сила тока источника, А

] ]) * [ ] / [ ]  Как подключить тумблер с тремя контактами с подсветкой фото

  • [Максимально возможное напряжение на нагрузке, В
  • ] = [Напряжение питания, В ] – [
  • Напряжение на резисторе R1, В
  • Напряжение насыщения коллектор – эмиттер транзистора, В
  • [Мощность транзистора, Вт
  • ] = ([Напряжение питания, В ] – [
  • Напряжение на резисторе R1, В
  • Необходимая сила тока источника, А
  • [Мощность стабилитрона, Вт
  • ] = 0.25 * [Необходимая сила тока источника, А ] * [
  • Напряжение стабилизации стабилитрона, В
  • Коэффициент передачи тока транзистора
  • [Мощность резистора R1, Вт
  • ] = [Напряжение на резисторе R1, В ] * [
  • Необходимая сила тока источника, А
  • [Мощность резистора R2, Вт
  • ] = ([Напряжение питания, В ] – [
  • Напряжение стабилизации стабилитрона, В
  • Сопротивление резистора R2, Ом

] – [ ] ]) * [ ] ] / [ ] ] ]) ^ 2 / [ ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Стабилитрон

СТАБИЛИТРОН – СТАБ (жаргонноеJ) — Это НЕ сложно!

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего — либо или в чем — либо.

                                                                                                                                                В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее.

                                                                                                                                                                            В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

Читайте также:  Болт прокручивается в резьбе

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

«Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки…»

  • Все правильно, но слишком заумно.
  • Я попробую сказать проще
  • Стабилитрон — это такой полупроводниковый прибор, который стабилизирует напряжение.
  • Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Принцип работы стабилитрона

  1. Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.                 
  2. Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.
  3. Теперь от “сантехники” перейдем к электронике.                                                                     
  4. Обозначение стабилитрона на принципиальной схеме такое – же, как и у диода, отличие “черточка” катода изображается как буква Г. 

Обозначение стабилитрона на схеме

Стабилитрон работает только в цепи постоянного тока, и пропускает напряжение в прямом направлении анод – катод так же — как и диод. В отличи от диода у стабилитрона есть одна особенность, если подать ток в обратном направлении катод – анод, ток через стабилитрон течь не будет, но ток в обратном направлении не будет течь только до тех пор, пока напряжение не превысит заданное значение.

Что является заданным значением напряжения для стабилитрона?                                           

Стабилитрон имеет свои параметры – это напряжение стабилизации и ток.                            Параметр напряжение — указывает при какой величине напряжения стабилитрон будет пропускать ток в обратном направлении, параметром ток – задана сила тока, при которой стабилитрон может работать не повреждаясь. 

Стабилитроны изготавливают для стабилизации напряжения различной величины, например, стабилитрон с обозначением V6.8 будет стабилизировать напряжение в пределах 6.8 Вольта.

Таблица рабочих параметров стабилитронов.

 

В таблице указаны основные параметры – это напряжение стабилизации и ток стабилизации. Есть и другие параметры, но они тебе пока не нужны. Главное понять суть работы стабилитрона и научиться выбирать нужный тебе для твоих схем и для ремонта радиоэлектроники.

Рассмотрим принципиальную схему объясняющую принцип работы стабилитрона.

Возьмем стабилитрон параметром — напряжение стабилизации 12Вольт.                                              Для того чтобы через стабилитрон начал поступать ток в обратном направлении от катода к аноду, входное напряжение должно быть выше напряжения стабилизации стабилитрона (с запасом).

                                                                                                                                                                  Например — если стабилитрон рассчитан на напряжение стабилизации 12Вольт входное напряжение должно быть не меньше 15Вольт.

                                                                                        Балластный резистор Rб ограничивает ток который будет проходить через стабилитрон до номинального.

                                                                                                                                                        Как видишь, при напряжении, превышающем ток стабилизации стабилитрона, оный начинает сбрасывать лишнее напряжение через себя на минус.

                                                                        Иными словами, стабилитрон, выполняет роль переливной трубы, чем больше напор воды или величина электрического тока, тем сильнее открывается стабилитрон и наоборот при уменьшении напряжения, стабилитрон начинает закрываться, уменьшая прохождения тока через себя.

Эти изменения могут происходить как плавно, так и с огромной скоростью в малых интервалах времени, что позволяет добиться высокого коэффициента стабилизации напряжения.

Если напряжение на входе стабилизатора будет меньше 12Вольт, стабилитрон “закроется” и напряжение на выходе стабилизатора будет “плавать” так – же, как и на входе, при этом никакой стабильности напряжения не будет. Вот почему напряжение входное должно быть больше чем необходимое выходное (с запасом).

                                                                                                          Приведенная схема называется параметрический стабилизатор.

                                                          Кто хочет полный расклад по расчету параметрического стабилизатора, пусть посетит ГУГЛ, нам начинающим для первого раза вполне достаточно, не будем заморачивать себя формулами.

Теперь перейдем к лабам (лабораторным работам :).

 

Перед тобой макет параметрического стабилизатора, на входе и выходе макета имеются вольтметры.  Сейчас вольтметр на ВХОДЕ стабилизатора показывает 6 вольт на ВЫХОДЕ стабилизатора практически такое же напряжение.

                                                                                      Так как я уже говорил, стабилитрон макета имеет напряжение стабилизации 8и2 вольта, напряжение в 6 Вольт на ВХОДЕ стабилизатора, не превышает напряжение стабилизации стабилитрона, поэтому стабилитрон закрыт. 

Теперь я повышаю напряжение на входе стабилизатора до 15 Вольт, напряжение на входе стабилизатора превысило напряжение стабилизации стабилитроне и на выходе стабилизатора достигло заданного напряжения стабилизации 8.

Читайте также:  Термообработка древесины: технология, оборудование, преимущества

2 Вольта таким оно и остается, практически неизменным, даже при резких бросках напряжения, стабилитрон отрабатывает мгновенно, поддерживая стабильность напряжения.

                                                                                                      Повторяюсь еще раз – “Для того чтобы параметрический стабилизатор работал правильно на входе всегда должно быть напряжение, превышающее напряжение стабилизации стабилитрона т. е. с запасом примерно 15-25%”

  • Так как ток стабилизации такого параметрического стабилизатора слишком мал, параметрический стабилизатор обычно применяют в блоках питания как стабилизирующий элемент схемы, где кроме самого стабилизатора присутствуют элементы регулировки напряжения, мощные транзисторы.
  • Пример — схема регулируемого стабилизатора (блока питания). 
  • В современной электронике, параметрические стабилизаторы применяют все реже, в основном используя специальные микросхемы, которые представляют из себя довольно мощные стабилизаторы с очень хорошим коэффициентом стабилизации, они компактны и легко применимы.  

Но о них мы поговорим в следующий раз. Тем не менее, параметрические стабилизаторы можно встретить во многих различных электронных схемах, поэтому знать их и понимать элементарно принцип работы нужно.

Как проверить стабилитрон

Для проверки стабилитрона, нужно знать как пользоваться мультиметром и воспользоваться методикой проверки полупроводникового диода, если есть возможность можно собрать схему параметрического стабилизатора и проверить стабилитрон в работе, как описано в этой статье.                                Если у тебя имеется стабилитрон и ты не знаешь его параметры (стерлась надпись на корпусе стаба), собрав схемку параметрического стабилизатора можно определить на какое напряжение стабилизации работает этот неопознанный стаб.

К оглавлению

Авок 1.05. приложение 3. условные обозначения оборудования

Полупроводниковый светоизлучающий диод показан на рис.

Допускается использовать смешанное изображение, например, обмотку статора — развернутым способом, обмотку ротора — упрощенным рис. Элементы контроля управления помещают на другом чертеже. Изображение фотоэлектрических приборов Рис. Условные графические обозначения радиоэлементов

И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне. I — Ответвления.

Виды контакторов На рисунке изображён двухконтактный переключатель.

G — Пересечение с отсутствием соединения. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три: Функциональная, на ней представлены узловые элементы изображаются как прямоугольники , а также соединяющие их линии связи.

  Какие бывают кабельные каналы (короба, лотки) в фото

  • Правила оформления принципиальных электрических схем В настоящее время принципиальные электрические схемы трансформаторных подстанций выполняют в соответствии с ГОСТ Пример однолинейной схемы Монтажные электрические схемы.
  • Условные графические обозначения и размеры некоторых элементов принципиальных схем: Стандарты.
  • Как читать электрические схемы. Радиодетали маркировка обозначение

Что из себя представляет микросхема LM317

Микросхема представляет собой линейный стабилизатор напряжения, выходное значение которого можно устанавливать в определенных пределах или оперативно регулировать. Выпускается в нескольких вариантах корпуса с тремя выводами. Диапазон выходного напряжения у всех вариантов одинаковый, а максимальный ток может различаться.

Обозначение Максимальный ток, А Корпус
LM317T 1,5 TO-220
LM317LZ 0,1 ТО-92
LM317P 1,5 ISOWAT-220
LM317D2T 1,5 D2PAK
LM317K 0,1 ТО-3
LM317LD 1,5 SO-8

Общие сведения

Графические условные значки широко используются на всех этапах создания проекта систем вентиляции, отопления и кондиционирования. С их помощью легко передать требуемый объём информации. Они помогают лучше разобраться с проектом, быстрее проанализировать наиболее сложные участки вентиляционной трассы, не загромождают чертёж, делая его более читабельным.

Обозначение w в электрике что это

Для изображения защитного проводника также имеется отдельный значок Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства. С — отображение катушки устройства с механической блокировкой. Часто тут же проставлены расстояния и номиналы.

Схема условных обозначений измерительных приборов вольтметра, амперметра и др. Блок — понятие общее, в его состав может входить как небольшое, так и значительное количество деталей. Элементы электрических схем. Реле.

Обозначения строят из комбинации букв и цифр.

Если полярность отсутствует, обе обкладки обозначаются узкими прямоугольниками. Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один.

B Аппаратура для преобразования неэлектрических величин в электрические без генераторов и источников питания , аналоговые и многозарядные преобразователи, датчики для указаний или измерений Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.

  Назначение, мощность и виды трансформаторной подстанции

Так, без обозначения остались диммеры светорегуляторы и кнопочные выключатели.

Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить. Электролитические конденсаторы устанавливаются в фильтрах электропитания низкочастотных и импульсных устройств.

Характерная особенность такой схемы — минимальная детализация.

Чертим гидравлическую схему [2] в САПР Компас3D

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.

755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован.

Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]